“Explaining EXPLAIN"
php|works 2006 in Toronto

Lukas Kahwe Smith
smith@pooteeweet.org

Agenda:

* Introduction

* Understanding Performance

* Simple Searches

* Joins and Subqueries

* Prepared Statements, Stored Routines
* Views, FROM Subqueries and Templates
* Reading EXPLAIN Output

* Optimal Execution Order

* SQL Query Visualization

* Controlling Execution Plans

* Example Optimization

Introduction:
The “SQL‘ Standard

* Structured [English] Query Language

* Does not cover all behavioral aspects
- Indexes
- Algorithms
- Caching
- etc.
* Not all vendors chose the same ways to

implement the standard

- Do not expect things to work the same on
different databases!

- But the common ground is large enough

Introduction:
EXPLAIN

* Show execution plan for a given query
- How and in what order will the tables
be read/scanned?
- What indexes will be used?
- What join algorithms will be used?
- The [estimated] ,, execution cost"?
* Tool of choice for query optimizations
* Not part of the SQL standard
* All DBMS have some equivalent
- SET EXPLAIN, SELECT .. PLAN, etc.

Introduction:
Sakila and Pagila

* Most examples use the Sakila/Pagila

sample database

- Table and column names shortened
* a is address
* C IS customer
* a_id is address _id
* date is rental _date
* etc.

* Contains various tables, triggers, views,
stored routines and sample data
* Files should be in your home dir!

Introduction:
Example Query for Sakila

SELECT c.last_name, a.phone, f.title

FROM r INNER JOIN c ON r.c_id = c.c_id
INNER JOIN a ON c.a _id = a.a _id
INNER JOIN i ON r.i_id = i.i_id
INNER JOIN f ON i.f_id = f.f_id
WHERE r.return_date IS NULL

AND r.date < (CURRENT_DATE

- INTERVAL f.duration DAY)
AND a.phone LIKE '19%'

Introduction:
Example Query for Pagila

SELECT c.last_name, a.phone, f.title
FROM r INNER JOIN c ON r.c_id = c.c_id
INNER JOIN a ON c.a _id = a.a _id
INNER JOIN i ON r.i_id = i.i_id
INNER JOIN f ON i.f_id = f.f_id
WHERE r.return_date IS NULL
AND r.date < (CURRENT_DATE
- (f.duration || ' DAY")::INTERVAL
AND a.phone LIKE '19%'

Introduction:
Example Output

+-—m - - m - - m - +
| last name | phone | title |
e tom - tom - +

GREGORY 195003555232 BERETS AGENT

MYERS 196568435814 CLUB GRAFFITI

PATTERSON 198123170793 DOORS PRESIDENT

GREGORY 195003555232 FRIDA SLIPPER

HITE 191958435142 FROST HEAD

FORSYTHE 199514580428 GUNFIGHT MOON

WADE 192459639410 LUST LOCK

WADE 192459639410 PHILADELPHIA WIFE
- - - m - Fmmm - +

8 rows in set (0.19 sec)

Introduction:
EXPLAIN MySQL

khkkhkhkkkhkhkkhkhkhkhkkhkhkhkkhkhkhkkhkhkkk] row **hkhkkkhkhkhkkhkhhkkhkhhkhkhhhkhkhhhhk
id: 1
select type: SIMPLE

type: ALL
possible keys: PRIMARY

key: NULL

key len: NULL
ref: NULL
rows: 1058
Extra:
khkkhkhkkkhkhkkhkhkhkhkkhkhkhkkhkhkhkkhkhkhkk 2 prow **khkhkkkhkhkhkkhkhhkkhkhhkhkhhhhkkhhkk
id: 1

select type: SIMPLE

type: ref
possible keys: PRIMARY,idx fk film id
key: idx fk film id

key len: 2
ref: sakila.film.film id
rows: 2

Extra: Using index

Introduction:
EXPLAIN MySQL (continued)

khkkhkhkkkhkhkkhkhkhkhkkhkhkhkkhkhkkkhkhkkk 3 prow **khkhkkkhkhkhkkhkhkhkkhkhhkhkhhhkhkkhhkk

id:
select type:

type:

possible keys:
key:

key len:

ref:

rOWS:

Extra:

1
SIMPLE

ref

rental date,idx fk inventory id,idx fk customer id
idx fk inventory id

3

sakila.inventory.inventory id

1

Using where

khkhkkhkkhkhkkhkkhkhkhkhkkhkkhkhkhkkhkkhkkhkk 4 row *h**hkkkhkkhkkhhkkhkkhhkhhkkhkhhkkhk

id:
select type:

type:

possible keys:
key:

key len:

ref:

rOWS :

Extra:

1
SIMPLE

eq ref
PRIMARY,idx fk address id
PRIMARY

2
sakila.rental.customer id
1

Introduction:
EXPLAIN MySQL (continued)

kkhkkhkkkkhkhkkkhkhkkkhkhkkkkhkkkkhkkk § prow **khkkkkhkhkhkkkhkhkkkhkhkkkhhkkkkhkk
id: 1
select type: SIMPLE

type: eq ref
possible keys: PRIMARY
key: PRIMARY

key len: 2
ref: sakila.customer.address_id
rows: 1

Extra: Using where
5 rows in set (0.00 sec)

Execution Order:
Film, Inventory, Rental, Customer, Address

Introduction:
EXPLAIN PostgreSQL

Nested Loop (cost=359.64..366.64 rows=1 width=43)"
Join Filter: ("outer".rental date < (('now'::text)::date - ((("inner".rental duration.."
-> Nested Loop (cost=359.64..363.57 rows=1l width=35)"
-> Merge Join (cost=359.64..360.55 rows=1 width=37)"

Merge Cond: ("outer".customer_ id = "inner".customer_ id)"
-> Sort (cost=26.64..26.65 rows=3 width=29)"
Sort Key: .customer_ id"
-> Nested Loop (cost=0.00..26.62 rows=3 width=29)"
-> Seqg Scan on (cost=0.00..17.54 rows=3 width=19)"

Filter: ((phone)::text ~~ '19%'::text)"
-> Index Scan using idx fk address_id on customer (cost=0.00.."
Index Cond: (customer.address_id = "outer".address_ id)"
-> Sort (cost=333.00..333.44 rows=176 width=14)"
Sort Key: rental.customer id"

-> Seqg Scan on (cost=0.00..326.44 rows=176 width=14)"
Filter: (return _date IS NULL)"
-> Index Scan using inventory pkey on (cost=0.00..3.01 rows=1l width=6)"
Index Cond: ("outer".inventory id = inventory.inventory id)"
-> Index Scan using film pkey on (cost=0.00..3.04 rows=1 width=24)"

Index Cond: ("outer".film id = film.film id)"

Execution Order:
Address, Customer, Rental, Inventory, Film

Understanding Performance:
Benchmarking

* Set of isolated performance test cases

* Indicator for how an application would
perform if it were to use the given code

* Beware of caching

* Change one parameter at a time

* Store results for later reference

* Understand all aspects of benchmark
before making conclusions!

* Tools: EXPLAIN and other DBMS tools,
Super Smack, ApacheBench, etc.

Understanding Performance:
Profiling

* Method of diagnosing the performance
bottlenecks of a specific application

* Pin point trouble spots that to isolate,
benchmark and tweak

* Focus on areas where application
spends the most time in

* Profile real world user pattern

* Beware of caching

* Tools: user land profiler like APD,
xDebug or Zend Server or GUI test tools

Understanding Performance:
Optimizers

* Rule-based optimizers use non volatile
data and fixed assumptions
* Cost-based optimizers additionally use

table statistics and other volatile data
- Biggest advantage for cost-based
optimizers is for joins
* Physical I/O vs. Logical I/0
* Statistics and on disk representation of

data and indexes may change over time
- Use ANALYZE, OPTIMIZE, VACUUM etc.

Simple Searches:
Index Basics

* Optimal search condition form

- <column> <operator> <literal>
°ecl-12=c2x2vs.cl=(c2x2)+ 12
°*cl=c2ANDcl=12vs.cl =12ANDc2 =12

- Some DBMS allow indexes on expressions
- Merging two indexes is expensive (*)

* Tablescan reading > 20% table rows
* Use index reading < 0.5% table rows
* No generic advice reading 0.5% - 20%

table rows
- Oracle 13%, MySQL 30%

Simple Searches:
Index Types

* Btree indexes
- Best general purpose index type

- Sorting, equality and range searches
* bday = CURRENT_DATE AND name LIKE 'T%'

* Bitmap indexes
- Equality searches with multiple indexes (*)
- Distinct values should be < 1% of rowcount
* Hash indexes
- Equality searches
* Custom index types
- GiST (PostgreSQL), Fulltext (MySQL)

Simple Searches:
Covering and Compound Indexes

* Covering Index
- DBMS skips reading table when index

contains all data required from the table
* SELECT indexed_col FROM t1
WHERE indexed_col = 'A%';
* PostgreSQL must reads table due to their MVCC

* Compound Index
- Index (c1, c2, c3) implies (c1, c2) and (c1)
* SELECT * FROM t1 WHERE c1 = 'A%’;

- Index (c1, c2, c3) not usable in this case
* SELECT * FROM t1 WHERE c2 = 'A%’;
* Oracle supports “index skip scan”

Simple Searches:

Character type
NULL

Code Points
Operator Points Operand Points
= 10 Literal alone 10
p 5 Column alone 5
> = 5 Parameter alone 5
< 5 Multiop. Expression 3
<= 5 Exact numeric type 2
LIKE 3 Other numeric type 1
<> 0 Temporal type 1
0
0

Simple Searches:
Code Points Examples

* WHERE some_char = 'The answer: 421!

- Left side
* 0 Points for ,character type"
* 5 Points for ,,column alone"
- Operator
* 10 Points for ,,equal®
- Right side
* 10 Points for ,literal alone"
- 25 Points Total

Simple Searches:
Code Points Examples (continued)

* WHERE some_int <= another int + 23

- Left side
* 2 Points for ,exact numeric type"
* 5 Points for ,column alone"
- Operator
* 5 Points for ,smaller or equal®
- Right side
* 3 Points for ,multi operand expression"
* 2 Points for ,,exact numeric type"

- 17 Points Total

Joins and Subqueries:
Nested Loop Joins

for (each row in outer_table) {
for (each row in inner_table) {
if (join column matches) {
pDass;
) else {
fail;
b
b
¥

Joins and Subqueries:
Nested Loop Joins (continued)

* Stable performance and memory usage

* Outer table

- Table with most restrictive/expensive

WHERE clause

- Table that allows fewer rows through filter
* Inner table

- Table with a good index

- Small table that fits into memory
* Join Condition

- Should be done on indexes

- Should be done on same data type and size

Joins and Subqueries:
Hash Joins

* Fast when joining a large table with a
small table on an equality condition
* Fall back from nested loop joins when
- Inner table hash fits into memory
- No index for join condition on the
inner table
- No restrictions on large outer table
* Disadvantages
- Memory requirements
- Hash generation overhead

Joins and Subqueries:
Sort Merge Joins

sort (t1); sort (t2); // <- expensive
get first row (t1); get first row (t2);
while (rows in t1 || rows in t2) {
if (join-col in t1 < join-col in t2) {
get next row (t1);
} elseif (join-col in t1 > join-col in t2) {
get next row (t2);
} elseif (join-col in t1 = join-col in t2) {
pass;
get next row (t1); get next row (t2);

Joins and Subqueries:
Sort Merge Joins (continued)

* Only single pass when data is presorted
* Fall back for nested loop joins and hash

joins when
- Both tables are about equal in size
- Both tables are large
* Disadvantages
- Startup time and memory cost for the initial
Jelguiale

Joins and Subqueries:
Join Advantages over Subquery

* Optimizer has more choices
- Correlated subqueries force a nested loop
- More freedom in the execution order

* Ability to include columns from both
tables in the select list

* Due to their greater popularity they are
used more and therefore optimized

more in DBMS

- Some DBMS can parallelize joins better
- Subqueries in MySQL 4.1 - 5.0.x often slow

Joins and Subqueries:
Subquery Advantages over Join

* ANY or EXISTS can break out early
* Column type mismatches are less costly

* Only recently DBMS are adding the

ability to join in UPDATE/DELETE
- MySQL limits subqueries in UPDATE/DELETE

* Simpler to read ("modular”)
- Many RDBMS rewrite subqueries where
possible to JOINs internally

Prepared Statements and
Stored Routines Execution Plans:

* MySQL disable query cache and prevent
use of some statements
* Oracle execution plan are generated
- < 9j at prepare time
- since 9i with first bound values
* PostgreSQL execution plan generated
- nhamed prepared statements at prepare
time
- unnamed prepared statements with first
bound values

* Similar issues for stored routines

Views, FROM Subqueries and
Templates:

* Control over execution plan is limited by

the underlying view defining query
- Any change may affect any number of other
gueries that use the given view
* Some view/subquery using queries

cannot be translated into a simple query

- Especially the case for outer joins to views
or views with UNION and GROUP BY

* Lead to redundant or unnecessary work
- SELECT .. FROM c LEFT OUTER JOIN a ON
s.a_id = a.a_id WHERE a.phone = '555'

Reading EXPLAIN Output:

MySQL EXPLAIN Columns

* id * Sequential numer

* select_type e SIMPLE, SUBQUERY ..

* table * Table name

* type * const, *ref*, index, ALL ..
* possible_keys ¢ List of possible indexes

* keys * Index that is used

* key_len * Length if the index used

* ref * Expression compared

®* FOWS * Expected read rowcount
* EXTRA * Using index, where, filesort,

temporary etc.

Reading EXPLAIN Output:
Example EXPLAIN

khkkkkkkkkhkkkhkkkhkk 29 prow **kkkkkkhkkkhkkhkk
id: 1
select type: SIMPLE
table: inventory
type: ref
possible keys: PRIMARY,idx fk film id
key: i1dx fk film id

key len: 2
ref: sakila.film.film;id
rows: 2

Extra: Using index

Optimal Execution Order:
Robust Plan Characteristics

* Cost is proportional to rowcount
returned

* Require little sort or hash memory

* Require no changes when table sizes
grow

* Have moderate sensitivity to distribution

* Are not necessarily the fastest, but
usually pretty close to the fastest,
execution plan

Optimal Execution Order:
Robust Plan Requirements

* Prefer very selective filters
- Initial driving table is the most important
choice
* Drive using nested loop joins on indexes
- Only consider tables that join previous
tables
* Drive to primary keys first
- Keep number of rows low as long as
possible

Optimal Execution Order:
Further Optimization Strategies

* Only when basic robust plan rules do

not give the required performance

- Prefer smaller tables/expensive filters
* But make a very small table inner most table

- Try to join to very selective filters earlier
* Jump to single row join nodes
* Join to tables with similar filter ratios

- Hash joins for joining a large table with a
small rowcount who's hash fits into memory

- Sort merge joins when data is presorted or
both table have equally large rowcounts

- etc ..

SQL Query Visualization:
Example Query

SELECT c.last_name, a.phone, f.title

FROM r INNER JOIN c ON r.c_id = c.c_id
INNER JOIN a ON c.a _id = a.a _id
INNER JOIN i ON r.i_id = i.i_id
INNER JOIN f ON i.f_id = f.f_id
WHERE r.return_date IS NULL

AND r.date < (CURRENT_DATE

- INTERVAL f.duration DAY)
AND a.phone LIKE '19%'

SQL Query Visualization:

Q1: SELECT COUNT(*) FROM rental WHERE return_date IS NULL => 183

Q2: SELECT COUNT(*) FROM rental => 16044 oot table Q1Q2=0,011
rental

\:tail table

iInventory

Q3: SELECT COUNT(*) FROM customer => 599
customer

detail join ratio
Q4/Q6 = 0,99

master join ratio

Q4/Q3 = 1 film

master table
address
5/Q6 = 0,013
filter ratio

Q4: SELECT COUNT(*) FROM address a, customer c WHERE a.address_id = c.address_id => 599
Q5: SELECT COUNT(*) FROM address WHERE phone LIKE '19%' => 8
Q6: SELECT COUNT(*) FROM address => 603

SQL Query Visualization:
Deducing Execution Plan

* Driving table choice
- rental or address
- similar filter ratio but address produces

lower rowcount

* Best plan
1.address
2.customer
3.rental
4.inventory
5.film

Controlling Execution Plans:
Strategy Overview

* SQL Level
- Add SQL hints or (bogus) information
- Rewrite SQL
* Statistics Level
- ANALYZE table and indexes
- Fake statistics
* Server Configuration
- Enable/disable features
- Set buffer sizes
* Schema Level
- Denormalization

Controlling Execution Plans:
SQL Level

* SQL hints for MySQL
- SELECT SQL_SMALL_RESULT .. FROM ..
- SELECT .. FROM t1 FORCE INDEX (idx1) ..
- SELECT .. FROM t1 STRAIGHT_JOIN t2 ..

* Add more information
- Add implicit join condition
* WHERE a.postcal_code = 34221

AND store.a_id = a.a_id AND staff.a_id = a.a_id
AND staff.a_id = store.a id

- Improve driving table filter ratio for inner
joins by applying the master join ratio early
 t1.FKt2 IS NOT NULL

Controlling Execution Plans:
SQL Level (continued)

* Add bogus information

- Disable index
* rental _duration + 0 = :int

e title
e COA

- Force]

|| "' = :title
| ESCE(last_name, last_name)
oin order

* Add

pogus filter to make it appear like having a

restriction so that it is favored as the outer table
- AND tablel.columnl > "
* Force staff table to join before address table

- AND store.manager_staff_id = staff.staff_id
AND store.address_id + (O*staff.staff_id)

= address.address id

Controlling Execution Plans:
SQL Level (continued)

* Convert single SELECT into a UNION

ALL to enable easier index use
- SELECT .. FROM f
WHERE (title = :1 OR lang_id = :2)
- SELECT .. FROM f WHERE title = :1
UNION ALL
SELECT .. FROM f WHERE lang_id = :2

* Convert multiple queries (or a CURSOR)

into a single query using CASE
-r = CASE WHEN r > 2 THEN r * 0.90;
ELSEr * 1.10 END;

Controlling Execution Plans:
SQL Level (continued)

e EXISTS may be expressed with an

equivalent IN (same for NOT variants)
- SELECT .. FROM inventory i WHERE EXISTS
(SELECT NULL FROM rental WHERE

l.inventory_id = rental.inventory_.id)
* Use to drive from inventory to rental

- SELECT .. FROM .. i WHERE inventory_id IN

(SELECT inventory_id FROM rental)
* Use to drive from rental to inventory

* INTERSECT/EXCEPT may be expressed
with an equivalent EXISTS/NOT EXISTS

Controlling Execution Plans:
Statistics and Configuration Level

* PostgreSQL statistics
- ANALYZE [table [(column [, ...])]]

- Statistics are stored in pg_statistics

* May be manipulated as needed
* Will be overwritten with the next ANALYZE

* PostgreSQL query planner configuration
- SET SESSION ENABLE_HASHIOIN TO OFF
- SET CPU_OPERATTOR_COST TO 0.003
- SET GEQO_THRESHOLD TO 9

Controlling Execution Plans:
Schema Level

* Merge One-One relationships
* Split tables into One-One relationships

* Denormalization
- Add (Join-)Indexes, Materialized Views
- Cache data in application memory
- Cache aggregate results in memory/DBMS

- Move “inherited” properties to detail tables
* SELECT country.country FROM city INNER JOIN
country ON city.country_id = c.country_.id
- Copy country column from to city table
* SELECT city.country FROM city

Example Optimization:
Force Execution Order with a Hint

SELECT c.last_

FROM

INNER JOI
INNER JOI
INNER JOI

name, a.phone, f.title

ON a.a_id = c.a_id
NrONc.cid=r.cid
NiONTFr.i id=i.i id
NfONiIi.fid=f.f id

WHERE r.return IS NULL
AND r.date < CURRENT_DATE
- INTERVAL f.duration DAY
AND a.phone LIKE '19%/’;

References:

* These slides
- http://pooteeweet.org/files/phpworks06/explaining_explain.pdf

* "SQL Performance Tuning"
by Peter Gulutzan and Trudy Pelzer
* "SQL Tuning” by Dan Tow

* Benchmarking and Profiling
- http://dev.mysqgl.com/tech-resources/articles/pro-mysql-ch6.pdf

* Sakila 0.8.0

- http://www.openwin.org/mike/download/sakila-0.8.zip

* Pagila 0.8.0

- http://pgfoundry.org/frs/download.php/919/pagila-0.8.0.zip

Thank you for listening ..
Comments? Questions?

smith@pooteeweet.org

