
“ Finding Order in
Execution“

webtuesday April 2007
Zürich

Lukas Kahwe Smith
lsmith@optaros.com

Agenda:
● Introduction
● Understanding Performance
● Simple Searches
● Joins and Subqueries
● Prepared Statements, Stored Routines
● Views, FROM Subqueries and Templates
● Reading EXPLAIN Output
● Optimal Execution Order
● SQL Query Visualization
● Controlling Execution Plans
● Example Optimization

SKIP Introduction:
The “SQL“ Standard

● Structured [English] Query Language
● Does not cover all behavioral aspects

– Indexes
– Algorithms
– Caching
– etc.

● Not all vendors chose the same ways to
implement the standard
– Do not expect things to work the same on

different databases!
– But the common ground is large enough

Introduction:
EXPLAIN

● Show execution plan for a given query
– How and in what order will the tables

be read/scanned?
– What indexes will be used?
– What join algorithms will be used?
– The [estimated] „execution cost“?

● Tool of choice for query optimizations
● Not part of the SQL standard
● All DBMS have some equivalent

– SET EXPLAIN, SELECT .. PLAN, etc.

SKIP Introduction:
Sakila and Pagila

● Most examples use the Sakila/Pagila
sample database
– Table and column names shortened

● a is address
● c is customer
● a_id is address_id
● date is rental_date
● etc.

● Contains various tables, triggers, views,
stored routines and sample data

Introduction:
Example Query

● Find Overdue DVDs
– Search the rental table for films with a

return date that is NULL
– And where the rental date is further in the

past than the rental duration specified in
the film table

● List the name of the film along with the
customer name and phone number.

Introduction:
Example Query for Sakila

SELECT c.last_name, a.phone, f.title
FROM r INNER JOIN c ON r.c_id = c.c_id

INNER JOIN a ON c.a_id = a.a_id
INNER JOIN i ON r.i_id = i.i_id
INNER JOIN f ON i.f_id = f.f_id

WHERE r.return_date IS NULL
AND r.date < (CURRENT_DATE

 - INTERVAL f.duration DAY)
 AND a.phone LIKE '19%'

Introduction:
Example Query for Pagila

SELECT c.last_name, a.phone, f.title
FROM r INNER JOIN c ON r.c_id = c.c_id

INNER JOIN a ON c.a_id = a.a_id
INNER JOIN i ON r.i_id = i.i_id
INNER JOIN f ON i.f_id = f.f_id

WHERE r.return_date IS NULL
AND r.date < (CURRENT_DATE

 - (f.duration || ' DAY')::INTERVAL
 AND a.phone LIKE '19%'

Introduction:
Example Output
+-----------+--------------+-------------------+
| last_name | phone | title |
+-----------+--------------+-------------------+
GREGORY	195003555232	BERETS AGENT
MYERS	196568435814	CLUB GRAFFITI
PATTERSON	198123170793	DOORS PRESIDENT
GREGORY	195003555232	FRIDA SLIPPER
HITE	191958435142	FROST HEAD
FORSYTHE	199514580428	GUNFIGHT MOON
WADE	192459639410	LUST LOCK
WADE	192459639410	PHILADELPHIA WIFE
+-----------+--------------+-------------------+
8 rows in set (0.19 sec)

Introduction:
EXPLAIN MySQL
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film
 type: ALL
possible_keys: PRIMARY
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 1058
 Extra:
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: inventory
 type: ref
possible_keys: PRIMARY,idx_fk_film_id
 key: idx_fk_film_id
 key_len: 2
 ref: sakila.film.film_id
 rows: 2
 Extra: Using index

Introduction:
EXPLAIN MySQL (continued)
*************************** 3. row ***************************
 id: 1
 select_type: SIMPLE
 table: rental
 type: ref
possible_keys: rental_date,idx_fk_inventory_id,idx_fk_customer_id
 key: idx_fk_inventory_id
 key_len: 3
 ref: sakila.inventory.inventory_id
 rows: 1
 Extra: Using where
*************************** 4. row ***************************
 id: 1
 select_type: SIMPLE
 table: customer
 type: eq_ref
possible_keys: PRIMARY,idx_fk_address_id
 key: PRIMARY
 key_len: 2
 ref: sakila.rental.customer_id
 rows: 1
 Extra:

Introduction:
EXPLAIN MySQL (continued)

*************************** 5. row ***************************
 id: 1
 select_type: SIMPLE
 table: address
 type: eq_ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 2
 ref: sakila.customer.address_id
 rows: 1
 Extra: Using where
5 rows in set (0.00 sec)

Execution Order:
Film, Inventory, Rental, Customer, Address

Introduction:
EXPLAIN PostgreSQL

Nested Loop (cost=359.64..366.64 rows=1 width=43)"
 Join Filter: ("outer".rental_date < (('now'::text)::date - ((("inner".rental_duration.."
 -> Nested Loop (cost=359.64..363.57 rows=1 width=35)"
 -> Merge Join (cost=359.64..360.55 rows=1 width=37)"
 Merge Cond: ("outer".customer_id = "inner".customer_id)"
 -> Sort (cost=26.64..26.65 rows=3 width=29)"
 Sort Key: customer.customer_id"
 -> Nested Loop (cost=0.00..26.62 rows=3 width=29)"
 -> Seq Scan on address (cost=0.00..17.54 rows=3 width=19)"
 Filter: ((phone)::text ~~ '19%'::text)"
 -> Index Scan using idx_fk_address_id on customer (cost=0.00.."
 Index Cond: (customer.address_id = "outer".address_id)"
 -> Sort (cost=333.00..333.44 rows=176 width=14)"
 Sort Key: rental.customer_id"
 -> Seq Scan on rental (cost=0.00..326.44 rows=176 width=14)"
 Filter: (return_date IS NULL)"
 -> Index Scan using inventory_pkey on inventory (cost=0.00..3.01 rows=1 width=6)"
 Index Cond: ("outer".inventory_id = inventory.inventory_id)"
 -> Index Scan using film_pkey on film (cost=0.00..3.04 rows=1 width=24)"
 Index Cond: ("outer".film_id = film.film_id)"

Execution Order:
Address, Customer, Rental, Inventory, Film

SKIP Understanding Performance:
Benchmarking

● Set of isolated performance test cases
● Indicator for how an application would

perform if it were to use the given code
● Beware of caching
● Change one parameter at a time
● Store results for later reference
● Understand all aspects of benchmark

before making conclusions!
● Tools: EXPLAIN and other DBMS tools,

Super Smack, ApacheBench, etc.

SKIP Understanding Performance:
Profiling

● Method of diagnosing the performance
bottlenecks of a specific application

● Pin point trouble spots that to isolate,
benchmark and tweak

● Focus on areas where application
spends the most time in

● Profile real world user pattern
● Beware of caching
● Tools: user land profiler like APD,

xDebug or Zend Server or GUI test tools

Understanding Performance:
Optimizers

● Rule-based optimizers use non volatile
data and fixed assumptions

● Cost-based optimizers additionally use
table statistics and other volatile data
– Biggest advantage for cost-based

optimizers is for joins
● Physical I/O vs. Logical I/O
● Statistics and on disk representation of

data and indexes may change over time
– Use ANALYZE, OPTIMIZE, VACUUM etc.

Simple Searches:
Index Basics

● Optimal search condition form
– <column> <operator> <literal>

● c1 - 12 = c2 x 2 vs. c1 = (c2 x 2) + 12
● c1 = c2 AND c1 = 12 vs. c1 = 12 AND c2 = 12

– Some DBMS allow indexes on expressions
– Merging two indexes is expensive (*)

● Table-scan reading > 20% table rows
● Use index reading < 0.5% table rows
● No generic advice reading 0.5% - 20%

table rows (Oracle 13%, MySQL 30%)

SKIP Simple Searches:
Index Types

● Btree indexes
– Best general purpose index type
– Sorting, equality and range searches

● bday = CURRENT_DATE AND name LIKE 'T%'
● Bitmap indexes

– Equality searches with multiple indexes (*)
– Distinct values should be < 1% of rowcount

● Hash indexes
– Equality searches

● Custom index types
– GiST (PostgreSQL), Fulltext (MySQL)

SKIP Simple Searches:
Covering and Compound Indexes

● Covering Index
– DBMS skips reading table when index

contains all data required from the table
● SELECT indexed_col FROM t1

 WHERE indexed_col = 'A%';
● PostgreSQL must reads table due to their MVCC

● Compound Index
– Index (c1, c2, c3) implies (c1, c2) and (c1)

● SELECT * FROM t1 WHERE c1 = 'A%';
– Index (c1, c2, c3) not usable in this case

● SELECT * FROM t1 WHERE c2 = 'A%';
● Oracle supports “index skip scan”

SKIP Simple Searches:
Code Points

Operator Points
= 10
> 5
>= 5
< 5
<= 5
LIKE 3
<> 0

Operand Points
Literal alone 10
Column alone 5
Parameter alone 5
Multiop. Expression 3
Exact numeric type 2
Other numeric type 1
Temporal type 1
Character type 0
NULL 0

SKIP Simple Searches:
Code Points Examples

● WHERE some_char = 'The answer: 42!'
– Left side

● 0 Points for „character type“
● 5 Points for „column alone“

– Operator
● 10 Points for „equal“

– Right side
● 10 Points for „literal alone“

– 25 Points Total

SKIP Simple Searches:
Code Points Examples (continued)
● WHERE some_int <= another_int + 23

– Left side
● 2 Points for „exact numeric type“
● 5 Points for „column alone“

– Operator
● 5 Points for „smaller or equal“

– Right side
● 3 Points for „multi operand expression“
● 2 Points for „exact numeric type“

– 17 Points Total

Joins and Subqueries:
Nested Loop Joins

for (each row in outer_table) {
 for (each row in inner_table) {
 if (join column matches) {
 pass;
 } else {
 fail;
 }
 }
}

Joins and Subqueries:
Nested Loop Joins (continued)

● Stable performance and memory usage
● Outer table

– Table with most restrictive/expensive
WHERE clause

– Table that allows fewer rows through filter
● Inner table

– Table with a good index
– Small table that fits into memory

● Join Condition Should be done on
– indexes
– same data type and size

Joins and Subqueries:
Hash Joins

● Fast when joining a large table with a
small table on an equality condition

● Fall back from nested loop joins when
– Inner table hash fits into memory
– No index for join condition on the

inner table
– No restrictions on large outer table

● Disadvantages
– Memory requirements
– Hash generation overhead

Joins and Subqueries:
Sort Merge Joins
sort (t1); sort (t2); // <- expensive
get first row (t1); get first row (t2);
while (rows in t1 || rows in t2) {
 if (join-col in t1 < join-col in t2) {
 get next row (t1);
 } elseif (join-col in t1 > join-col in t2) {
 get next row (t2);
 } elseif (join-col in t1 = join-col in t2) {
 pass;
 get next row (t1); get next row (t2);
}}

Joins and Subqueries:
Sort Merge Joins (continued)

● Only single pass when data is presorted
● Fall back for nested loop joins and hash

joins when both tables are
– large
– about equal in size
– DBMS knows rows are sorted

● Disadvantages
– Startup time and memory cost for the initial

sorting

SKIP Joins and Subqueries:
Join Advantages over Subquery

● Optimizer has more choices
– Correlated subqueries force a nested loop
– More freedom in the execution order

● Ability to include columns from both
tables in the select list

● Due to their greater popularity they are
used more and therefore optimized
more in DBMS
– Some DBMS can parallelize joins better
– Subqueries in MySQL 4.1 – 5.0.x often slow

SKIP Joins and Subqueries:
Subquery Advantages over Join

● ANY or EXISTS can break out early
● Column type mismatches are less costly
● Only recently DBMS are adding the

ability to join in UPDATE/DELETE
– MySQL limits subqueries in UPDATE/DELETE

● Simpler to read (“modular”)
– Many RDBMS rewrite subqueries where

possible to JOINs internally

SKIP Prepared Statements and
Stored Routines Execution Plans:

● MySQL disable query cache (*) and
prevent use of some statements

● Oracle execution plan are generated
– < 9i at prepare time
– since 9i with first bound values

● PostgreSQL execution plan generated at
– prepare time: named statements
– first bound values: unnamed statements

● Similar issues for stored routines

SKIP Views, FROM Subqueries and
Templates:

● Control over execution plan is limited by
the underlying view defining query
– Any change may affect any number of other

queries that use the given view
● Some view/subquery using queries

cannot be translated into a simple query
– Especially the case for outer joins to views

or views with UNION and GROUP BY
● Lead to redundant or unnecessary work

– SELECT .. FROM c LEFT OUTER JOIN a ON
s.a_id = a.a_id WHERE a.phone = '555'

SKIP Reading EXPLAIN Output:
MySQL EXPLAIN Columns
● id
● select_type
● table
● type
● possible_keys
● keys
● key_len
● ref
● rows
● EXTRA

● Sequential number
● SIMPLE, SUBQUERY ..
● Table name
● const, *ref*, index, ALL ..
● List of possible indexes
● Index that is used
● Length if of the used index
● Expression compared
● Expected read rowcount
● Using index, where, filesort,

temporary etc.

SKIP Reading EXPLAIN Output:
Example EXPLAIN

***************** 2. row ****************
 id: 1
 select_type: SIMPLE
 table: inventory
 type: ref
possible_keys: PRIMARY,idx_fk_film_id
 key: idx_fk_film_id
 key_len: 2
 ref: sakila.film.film_id
 rows: 2
 Extra: Using index

Optimal Execution Order:
Robust Plan Characteristics

● Cost is proportional to rowcount
returned

● Require little sort or hash memory
● Require no changes when table sizes

grow
● Have moderate sensitivity to distribution
● Are not necessarily the fastest execution

plan, but usually pretty close to the
fastest

Optimal Execution Order:
Robust Plan Requirements

● Prefer very selective filters
– Initial driving table is the most important

choice
● Drive using nested loop joins on indexes

– Only consider tables that join previous
tables

● Drive to primary keys first
– Keep number of rows low as long as

possible

SKIP Optimal Execution Order:
Further Optimization Strategies

● Only when basic robust plan rules do
not give the required performance
– Prefer smaller tables/expensive filters

● But make a very small table inner most table
– Try to join to very selective filters earlier

● Jump to single row join nodes
● Join to tables with similar filter ratios

– Hash joins for joining a large table with a
small rowcount who's hash fits into memory

– Sort merge joins when data is presorted or
both table have equally large rowcounts

– etc ..

SQL Query Visualization:
Example Query

SELECT c.last_name, a.phone, f.title
FROM r INNER JOIN c ON r.c_id = c.c_id

INNER JOIN a ON c.a_id = a.a_id
INNER JOIN i ON r.i_id = i.i_id
INNER JOIN f ON i.f_id = f.f_id

WHERE r.return_date IS NULL
AND r.date < (CURRENT_DATE

 - INTERVAL f.duration DAY)
 AND a.phone LIKE '19%'

SQL Query Visualization:

rental

customer

Q2: SELECT COUNT(*) FROM rental => 16044

Q1: SELECT COUNT(*) FROM rental WHERE return_date IS NULL => 183

address
film

inventory

Q6: SELECT COUNT(*) FROM address => 603

Q5: SELECT COUNT(*) FROM address WHERE phone LIKE '19%' => 8

Q3: SELECT COUNT(*) FROM customer => 599

Q4: SELECT COUNT(*) FROM address a, customer c WHERE a.address_id = c.address_id => 599

Q4/Q3 = 1

Q4/Q6 = 0,99

Q5/Q6 = 0,013

Q1/Q2 = 0,011

master join ratio

detail join ratio

master table

detail table

root table

filter ratio

SQL Query Visualization:
Deducing Execution Plan

● Driving table choice
– rental or address

● similar filter ratio but
– address produces lower rowcount

● Best plan
1.address
2.customer
3.rental
4.inventory
5.film

Controlling Execution Plans:
Strategy Overview

● SQL Level
– Add SQL hints or (bogus) information
– Rewrite SQL

● Statistics Level
– ANALYZE table and indexes
– Fake statistics

● Server Configuration
– Enable/disable features
– Set buffer sizes

● Schema Level
– Denormalization

Controlling Execution Plans:
SQL Level

● SQL hints for MySQL
– SELECT SQL_SMALL_RESULT .. FROM ..
– SELECT .. FROM t1 FORCE INDEX (idx1) ..
– SELECT .. FROM t1 STRAIGHT_JOIN t2 ..

● Add more information
– Add implicit join condition

● WHERE a.postcal_code = 34221
AND store.a_id = a.a_id AND staff.a_id = a.a_id
AND staff.a_id = store.a_id

– Improve driving table filter ratio for inner
joins by applying the master join ratio early

● t1.FKt2 IS NOT NULL

Controlling Execution Plans:
SQL Level (continued)

● Add bogus information
– Disable index

● rental_duration + 0 = :int
● title || '' = :title
● COALESCE(last_name, last_name)

– Force join order
● Add bogus filter to give “appearance” of a

restriction so that it is favored as the outer table
– AND table1.column1 > ''

● Force staff table to join before address table
– AND store.manager_staff_id = staff.staff_id

AND store.address_id + (0*staff.staff_id)
 = address.address_id

Controlling Execution Plans:
SQL Level (continued)

● Convert single SELECT into a UNION
ALL to enable easier index use
– SELECT .. FROM f

 WHERE (title = :1 OR lang_id = :2)
– SELECT .. FROM f WHERE title = :1

UNION ALL
SELECT .. FROM f WHERE lang_id = :2

● Convert multiple queries (or a CURSOR)
into a single query using CASE
– r = CASE WHEN r > 2 THEN r * 0.90;

 ELSE r * 1.10 END;

Controlling Execution Plans:
SQL Level (continued)

● EXISTS may be expressed with an
equivalent IN (same for NOT variants)
– SELECT .. FROM inventory i WHERE EXISTS

(SELECT NULL FROM rental WHERE
i.inventory_id = rental.inventory_id)

● Use to drive from inventory to rental
– SELECT .. FROM .. i WHERE inventory_id IN

(SELECT inventory_id FROM rental)
● Use to drive from rental to inventory

● INTERSECT/EXCEPT may be expressed
with an equivalent EXISTS/NOT EXISTS

Controlling Execution Plans:
Statistics and Configuration Level

● PostgreSQL statistics
– ANALYZE [table [(column [, ...])]]
– Statistics are stored in pg_statistics

● May be manipulated as needed
● Will be overwritten with the next ANALYZE

● PostgreSQL query planner configuration
– SET SESSION ENABLE_HASHJOIN TO OFF
– SET CPU_OPERATTOR_COST TO 0.003
– SET GEQO_THRESHOLD TO 9

Controlling Execution Plans:
Schema Level

● Merge/Split-into One-One relationships
● Denormalization

– Add (Join-)Indexes, Materialized Views
– Cache data in application memory
– Cache aggregate results in memory/DBMS
– Move “inherited” properties to detail tables

● SELECT country.country FROM city INNER JOIN
country ON city.country_id = c.country_id

– Copy country column from to city table (or
get rid of the surrogate country_id key)

● SELECT country.city FROM city

Example Optimization:
Force Execution Order with a Hint

SELECT c.last_name, a.phone, f.title
FROM a STRAIGHT_JOIN c

 ON a.a_id = c.a_id
INNER JOIN r ON c.c_id = r.c_id
INNER JOIN i ON r.i_id = i.i_id
INNER JOIN f ON i.f_id = f.f_id

WHERE r.return IS NULL
AND r.date < CURRENT_DATE

 - INTERVAL f.duration DAY
AND a.phone LIKE '19%';

References:

● These slides
– http://pooteeweet.org/files/webtuesday0407/

 finding_order_in_execution.pdf

● “SQL Performance Tuning“
 by Peter Gulutzan and Trudy Pelzer

● “SQL Tuning” by Dan Tow
● Benchmarking and Profiling

– http://dev.mysql.com/tech-resources/articles/pro-mysql-ch6.pdf

● Sakila 0.8.0
– http://www.openwin.org/mike/download/sakila-0.8.zip

● Pagila 0.8.0
– http://pgfoundry.org/frs/download.php/919/pagila-0.8.0.zip

Thank you for listening ..
Comments? Questions?

smith@pooteeweet.org

