
“Beyond SQL“
php|tek 2006 in Orlando Florida

Lukas Kahwe Smith
smith@pooteeweet.org

Agenda:

● The “SQL“ Standard
● Understanding Performance
● Normalization
● Tables and Columns
● Indexes
● Joins and Subqueries
● Locks

The “SQL“ Standard:
History

● Standard [English] Query Language
● Standard language to talk to Relational

Database Management Systems
(RDBMS)

● Pronounced [SEQUEL]
● ANSI Standard

– 1986 (SQL 87)
– 1989 (SQL 89)
– 1992 (SQL 92)
– 1999 (SQL3)
– 2003 (SQL:2003)

The “SQL“ Standard:
Issues

● Does not cover all behavioral aspects
– SQL actually does not cover a lot of things

that people think are part of the standard!
● Is not free of ambiguity
● Often followed, rather than led, vendor

implementation
● Not all vendors chose the same ways to

implement the standard
– Do not expect things to work the same on

every database!

Understanding Performance:
Benchmarking

● Set of isolated performance test cases
● Indicator for how an application would

perform if it were to use the given code
● Repeat with disabled caching
● Change one parameter at a time
● Store results for later reference
● Dangerous: understand all aspects of

benchmark before making conclusions!
● Tools: Super Smack, ApacheBench, etc.

Understanding Performance:
Profiling

● Method of diagnosing the performance
bottlenecks of a specific application

● Pin point trouble spots that you may
then isolate, benchmark and tweak

● Spend the most time on areas where
your application spends the most time

● Benchmark advice also applies
● Tools: EXPLAIN and other DBMS tools,

user land profiler (like APD)

Understanding Performance:
Explain

● Show execution plan for a given query
– How will the table(s) be scanned?
– What indexes will be used?
– What join algorithms will be used?
– What is the estimated „execution

cost“?
● Tool of choice for query optimizations
● Not part of the SQL standard
● All DBMS have some equivalent

– SET EXPLAIN, SELECT .. PLAN, etc.

Understanding Performance:
Optimizers

● Rule-based optimizers use non volatile
data and fixed assumptions

● Cost-based optimizers additionally use
table statistics and other volatile data
– Everybody claims to be cost-based
– Biggest advantage for cost-based

optimizers is for joins
● Statistics may change over time

– Use ANALYZE, OPTIMIZE, VACUUM or some
other RDBMS specific command to keep
tables in mint condition

Normalization:
Overview

● Process of removing redundant data
● Normalization helps avoid INSERT

UPDATE and DELETE anomalies
● Anomalies cause

– INSERT to require unnecessary data
– DELETE remove too much data
– UPDATE to deal with redundant data

● Multiple normal forms (NF) exist
● Most databases are third normal form
● There are even stricter normal forms

Normalization:
Example

● PRIMARY KEY uniquely identifies a row
● CANDIDATE KEY is any set of columns

that uniquely identify a row
● Example non normalized table

– Name is the PRIMARY KEY
– Salary could be considered a CANDIDATE

KEY for this set of data
Diplomats
Name Title Language Salary Workgroup Head

Axworthy Consul French, German 30,000.00 WHO, IMF Greene, Craig
Broadbent Diplomat Russian, Greek 25,000.00 IMF, FTA Craig, Crandall

Craig Ambassador Greek, Russian 65,000.00 IMF Craig
Crandall Ambassador French 55,000.00 FTA Crandall
Greene Ambassador Spanish, Italian 70,000.00 WHO Greene

Normalization:
First Normal Form - 1NF

● All columns only contain scalar values
as opposed to lists of values
– Split Language, Workgroup, Head
– Name, Language and Work_group now

compromise the PRIMARY KEY
Diplomats
Name Title Language Salary Workgroup Head_honcho

Axworthy Consul French 30,000.00 WHO Greene
Axworthy Consul German 30,000.00 IMF Craig

Broadbent Diplomat Russian 25,000.00 IMF Craig
Broadbent Diplomat Greek 25,000.00 FTA Crandall

Craig Ambassador Greek 65,000.00 IMF Craig
Craig Ambassador Russian 65,000.00 IMF Craig

Crandall Ambassador French 55,000.00 FTA Crandall
Greene Ambassador Spanish 70,000.00 WHO Greene
Greene Ambassador Italian 70,000.00 WHO Greene

Normalization:
Dependence

● A Column is set dependent if its values
are limited by a another column

● A column is functionally dependent if
– For every possible value in the the column
– There is one and only one possible value

set for the items in a second column
– Must hold true for all possible values

● Column A is transitively dependent on
column C if
– Column A is dependent on column B which

in turn is dependent on column C

Normalization:
Second Normal Form - 2NF

● All nonkey columns must be functionally
dependent on the primary key
– Title, Salary are not functionally dependent

on the Language column
– Head is set dependent on Workgroup

Diplomats
Name Title Salary Workgroup Head

Axworthy Consul 30,000.00 WHO Greene
Axworthy Consul 30,000.00 IMF Craig

Broadbent Diplomat 25,000.00 IMF Craig
Broadbent Diplomat 25,000.00 FTA Crandall

Craig Ambassador 65,000.00 IMF Craig
Crandall Ambassador 55,000.00 FTA Crandall
Greene Ambassador 70,000.00 WHO Greene

Languages
Name Language

Axworthy French
Axworthy German

Broadbent Russian
Broadbent Greek

Craig Greek
Craig Russian

Crandall French
Greene Spanish
Greene Italian

Normalization:
Third Normal Form - 3NF

● All nonkey columns must directly
dependent on the primary key
– Head is only dependent on the Name

through the Workgroup column

Diplomats
Name Title Salary

Axworthy Consul 30,000.00
Broadbent Diplomat 25,000.00

Craig Ambassador 65,000.00
Crandall Ambassador 55,000.00
Greene Ambassador 70,000.00

Affiliations
Name Workgroup

Axworthy WHO
Axworthy IMF

Broadbent IMF
Broadbent FTA

Craig IMF
Crandall FTA
Greene WHO

Work_groups
Workgroup Head

WHO Greene
IMF Craig
FTA Crandall

Languages
Name Language

Axworthy French
Axworthy German

Broadbent Russian
Broadbent Greek

Craig Greek
Craig Russian

Crandall French
Greene Spanish
Greene Italian

Normalization:
When not to Normalize

● Intentionally violating normalization
rules is sometimes feasible
– Improve performance
– Simplify queries

● Application needs to handle anomalies
● RDBMS provide different features to

automatically handle “denormalization“
– Indexes
– Materialized Views
– Triggers

Normalization:
When to Normalize

● Always normalize unless you are
concerned with a single bottleneck

● Expect performance reduction for other
cases when denormalizing

● Normalized tables are smaller and
therefore allow for faster retrieval

● Instead of denormalize optimize joins

Tables and Columns:
Storage Hierarchy

Database

Tablespaces

Files

Extents

Pages

Tables and Columns:
General Tips

● Minimal unit of I/O is a page (not a row)
● I/O = Disk I/O + CPU I/O / 1000 + Net I/O * 1.5
● Page size should be same as cluster size
● Reading multiple rows from a single

page has a constant cost
● Use PCTFREE or FILLFACTOR to prevent

shifts for expanding UPDATE's

Tables and Columns:
Character Columns

● CHAR, VARCHAR and NCHAR (VARYING)
● Variable length columns save space and

accurately handle trailing whitespace
– For sorts defined, not real, length matters!
– Size storage overhead for variable length

columns costs between one and four bytes
● Fixed length reduce risk of page shifts

Tables and Columns:
Character Sorts

● Binary sort
– Fastest sort
– Somewhat non intuitive code page based
– Case sensitive

● Dictionary sort
– Requires conversion step
– Dictionary like sorting

● Dictionary sort with tie breaking
– Also sort by accents and letter case

● Pick the sort type at table creation or
use COLLATE (or CAST) at runtime

Tables and Columns:
Numerical Columns

● INTEGER, FLOAT, DECIMAL, SERIAL
● When choosing size beware of overflow

danger on arithmetic operations
● Consider using character types for

columns that require character function
● FLOATs may use CPU floating point unit

Tables and Columns:
Temporal Columns

● DATE, TIME and TIMESTAMP
● All fixed length
● Again try to be consistent in the type

choice to prevent casts
● Many DBMS internally always use

TIMESTAMP for storage
– No additional space requirement
– May affect sort speed however

Tables and Columns:
LOBs

● BLOB, CLOB and NCLOB
● Use when character type does not

provide sufficient space
● Usually stored on a separate page from

the rest of the row
– Reduce number of pages if data in LOB

column is seldom accessed
– Changes in LOB do not cause page shifts
– When not move LOB into it's own table

● Do not allow many of the common
character functions or set functions

Tables and Columns:
Sorting Speed

● Number of columns in the ORDER BY
● Length of the columns in the ORDER BY
● Number of rows
● Partial duplicates hurt performance
● Presorted sort faster than random sets

– Do not assume that sorting is instant if the
data is already in order!

● DBMS will try to keep data in memory if
the records in the ORDER BY are small

● INTEGER beat SMALLINT beat CHAR

Indexes:
General Tips

● Critical for performance is the number
of layers in the btree not the size
– Rebuild if 5% of all rows have changed
– Prefer non volatile columns for indexing
– Use bitmap indexes when selectivity is low
– Clustered indexes cause rows to be stored

in order of the clustered key
● Some DBMS multiple indexes per query
● Some DBMS do not include NULLs
● Most RDBMS allow forcing index use

– Do not force index reading 20%+ rows

Indexes:
Covering and Compound Indexes

● DBMS will use a covering index to fetch
data instead of the table when possible

● Are not used in joins or groupings
● Put the most used and most selective

column first
– Index on (A, B, C) implies indexes on (A)

and (A, B)
● Put columns in the query in the same

order as in the index

Joins and Subqueries:
Nested Loop Joins

for (each page in outer_table) {
 for (each page in inner_table) {
 for (each row in outer_table_page) {
 for (each row in inner_table_page) {
 if (join column matches) {
 pass;
 } else {
 fail;
 }
}}}}

Joins and Subqueries:
Nested Loop Joins

● Conclusion is DBMS will make the
– Smaller table the inner table
– Table with a good index the inner table
– Table with more restrictive/expensive

WHERE clause outer table
● For multi column joins add a matching

compound index on the inner table
● Use the same data type and size in both

tables for the columns in the join
● Use irrelevant restrictions on one table

to force it to become the outer table

Joins and Subqueries:
Nested Loop Joins

Joins and Subqueries:
Sort Merge Joins
sort (t1); sort (t2); // <- expensive
get first row (t1); get first row (t2);
while (rows in tables) {
 if (join-col in t1 < join-col in t2)
 get next row (t1);
 elseif (join-col in t1 > join-col in t2)
 get next row (t2);
 elseif (join-col in t1 = join-col in t2)
 pass;
 get next row (t1); get next row (t2);
}

Joins and Subqueries:
Sort Merge Joins

● Advantage
– one pass reading instead of multi pass with

nested-loop joins
● Disadvantage

– cost of sorting, requires more RAM, startup
overhead

● Perfect if you have a clustered key on
the join columns in both DBMS

Joins and Subqueries:
Hash Joins

● Hash join is a nested loop join where a
hash is computed for the inner table

● Useful mainly as a fall back from nested
loop joins and sort merge joins
– No restrictions on large outer table
– Not a lot of RAM to spare
– Data is not presorted
– No indexes

Joins and Subqueries:
Join Advantages over Subquery

● Optimizer has more choices
– subquery forces a nested-loop algorithm

● Multiple WHERE clauses in the outer
table can be reordered easier in a join

● Some DBMS can parallelize joins better
● It is possible to have columns from both

tables in the select list
● Due to their greater popularity they are

used more and therefore optimized
more in DBMS

Joins and Subqueries:
Subquery Advantages over Join

● ANY or EXISTS can break out early
● Column type mismatches are less costly
● Only recently more DBMS are getting

the ability to join in UPDATE
– MySQL limits subqueries in DML

● They read more easily as they are
„modular“

Locks:
Introduction

● Shared locks: reading
– N shared locks may coexist

● Update locks: reading + planned update
– N shared locks may coexist with one update

lock
● Exclusive locks: writing

– One exclusive lock may not coexist with
any other lock

● Granularity may be database, table,
page, row (and a few others)

● Lock granularity may get escalated up

Locks:
Isolation Levels

● READ UNCOMMITED
– no locks

● READ COMMITED (common default)
– may release lock before transaction end

● REPEATABLE READ (common default)
– may not release lock before transaction end

● SERIALIZEABLE
– concurrent transactions behave as of

executed in sequence

Locks:
Multi Version Concurrency Control

● Keep copy of modified data around until
all transactions have ended that started
before the change occurred
– PostGreSQL appends (use VACUUM)
– Oracle, MySQL, Interbase/Firebird overwrite

● Effectively evades locking readers
● Emulate using optimistic locking

– Locks at commit time
– Add unique “transaction id“ to row id
– Reads will work but UPDATEs will fail if

someone else has changed the data

Locks:
Deadlocks

● Deadlock is when multiple transactions
wait for one another to release locks
– Use READ ONLY and FOR UPDATE
– Escalate locks early in the transaction with

dummy UPDATE or LOCK statements
– Access tables in the same order in all

transactions
– Split transactions up as much as possible
– Do validation and computation in the client

before starting a transaction

References:

● These slides
– http://pooteeweet.org/files/phptek06/beyond_SQL.pdf

● „SQL Performance Tuning“
– by Peter Gulutzan and Trudy Pelzer

● Normalization
– http://dev.mysql.com/tech-resources/articles/intro-to-

normalization.html
● Images in the database

– http://mysqldump.azundris.com/archives/36-Serving-Images-From-A-Database.html
– http://mysqldump.azundris.com/archives/37-Serving-

Images-from-a-File-System.html
● Discussions over MVCC

– http://www.ibphoenix.com/main.nfs?page=ibp_mvcc_roman

http://mysqldump.azundris.com/archives/36-Serving-Images-From-A-Database.html

Thank you for listening ..
Comments? Questions?

smith@pooteeweet.org

