
“Database Schema
Deployment“

php|tek 2006 in Orlando Florida

Lukas Kahwe Smith
smith@pooteeweet.org

Agenda:

● The Challenge
● Diff Tools
● ER Tools
● Synchronisation Tools
● Logging Changes
● XML Formats
● SCM Tools
● Install Scripting
● Update Scripting
● Alternative Approaches

Terminology:

● DDL
– Data Definition Language

● CREATE
● ALTER
● DROP

● DML
– Data Manipulation Language

● INSERT
● UPDATE
● DELETE

The Challenge:
Overview

● Getting the DDL and DML
– SQL diff tools can generate DDL

● Usually RDBMS specific
– Data synchronisation very tricky

● Especially if DDL and DML needs to be mixed
– Deal with object dependencies

● Foreign Keys, Views, Stored Routines
– Column order matters with sloppy code

● No additional steps during development
● Less steps during packaging
● Allow releases to be skipped

The Challenge:
Example

● Version 1.0.0
– User database with a single phone number

● Version 1.1.0
– Allow infinate phone numbers per user by

adding a phone numbers table
● Add new table phone numbers

– CREATE TABLE phone_nums (user_id INT
REFERENCES user, phone_num CHAR(20))

● Move all data into the new table
– INSERT INTO phone_nums SELECT user_id,

phone_num FROM users
● Drop the old phone numbers column

– ALTER TABLE users DROP COLUMN phone_num

Diff Tools:
Overview

● Generate DDL by comparing
– SQL files
– Installed schema

● Does not handle DML
● Tend to be RDBMS specific
● Examples

– SQLYog (Win, MySQL, $)
– Toad (XXX, different RDBMS, $$)
– AdeptSQL (Win, MS SQL, $$)
– Most modeling tools

Diff Tools:
Example

Playing with SQLYog

ER Tools:
Overview

● ER Modeling tools
– Visually design schema
– Synchronize model
– Reverse engineer model

● Examples
– DBDesigner (Win, Generic)
– MySQL Workbench (Win/*nix, MySQL)
– PowerDesigner (XXX, Generic, $$$)
– ERWin (XXX, Generic, $$$)
– Visio (Win, Generic, $$)

ER Tools:
Example

Playing with DBDesigner

Synchronisation Tools:

● Find differences in data
● One way synchronisation is easy
● Two way synchronisation is tricky
● Only useable in the rare case where all

clients have the same data
– No way to generate DML to make the same

changes on different data

Logging Changes:

● PostGreSQL: log_statement “mod“
● MYSQL: binarylog with mysqlbinlog util
● Oracle: AUDIT command
● DB2: db2audit command
● Alternative approach

– Cronjob that checks for changes in the
information schema

● Only handles DDL
– Write all DDL and DML to a log and only

execute changes from the log

XML Formats:
AXMLS

● RDBMS independent XML format
● Bundled with ADODB
● Supports

– Tables
● Columns
● Autoincrement
● Constraints (not fully abstracted)
● Indexes
● Initialization

– Queries (not abstracted)
● Create, alter, remove schema
● Execute directly or dump statements

XML Formats:
Metabase XML

● Mostly same feature set as AXMLS
– Adds support for sequences and variables
– XML format uses no attributes
– No support for “plain“ queries
– No support to remove schemas
– Only support for primary/unique constraints

● Implemented in
– Metabase
– PEAR::MDB2_Schema
– ezc/DatabaseSchema

● DBDesigner exports to Metabase XML

XML Formats:
Example

Playing with PEAR::MDB2_Schema and
WebBuilder2 Application framework

SCM Tools:

● Standard SCM work line based
– Needs SQL parser in order to work

statement based
– Few SQL aware solutions available

● Daversy (Win, SQLite/Oracle)
● Keep one database object per file

– Watch out for dependencies
● VIEWs
● Stored Routines
● Triggers and Foreign Keys

Install Scripting:
Getting Started

● Dump test master for every release
– Advantage

● More or less automated
– Disadvantage

● No handling for DML
● Initial dump + all DDL and DML

– Check current schema before applying
● Can be applied to any version

– Advantage
● A singe script for install and upgrades

– Disadvantage
● Gets increasingly long

Install Scripting:
Dependency Hell

● Native dump tools handle dependencies
● Create dependency graph

– Figure out dependencies
– Order statements accordingly

● Use dummies
– Create dummy implementations of all

referenceing database objects
● VIEWs
● Stored Routines

– Replace dummies with actual
implementation

Update Scripting:
Get DDL and DML

● LOG
– CREATE TABLE phone_nums

(user_id INT REFERENCES
users, phone_num INT)

– ALTER TABLE phone_nums
MODIFY phone_num CHAR(20)

– (2) INSERT INTO phone_nums
SELECT user_id, phone_num
FROM users

– (3) ALTER TABLE users DROP
COLUMN phone_num

● Log every DDL and DML
● Diff between current and last release
● Compare diff against DDL and DML log

● DIFF
– ALTER TABLE users DROP

COLUMN phone_num
– (1) CREATE TABLE

phone_nums (user_id INT
REFERENCES users,
phone_num CHAR(20))

Update Scripting:
Organize DDL and DML

● Ordered list of DDL and DML changes
– Dependency order follows from log
– Every change has

● unique name per release
● code to detect if the change is required
● potentially a rollback script

● Ordered list of data unrelated objects
– Views and summary tables
– Stored routines

Update Scripting:
Code Flow

● Determine version and integrity of
current installed database

● Load all necessary changes
– Enclose in transaction

● not supported in MySQL
– Load previous changes if necessary

● Hard code deviations from previous releases by
referencing the unique change name

– Skip buggy irrelevant/changes
– Fold multiple changes into single change

– Reload data unrelated objects
– Update table stats

Update Scripting:
Notes

● Always explicitly hard code columns
– INSERT INTO foo VALUES (..); SELECT * ..

● Grants are a major PITA
– Store grants with object definitions

● Old RDBMS versions might not support
– New DDL: emulate with copy, drop, create
– New optional features

● MySQL only syntax: /*!50100 PARTITION .. */
– backwards compatibility

● Optionally show list of statements
before execution for additional security

Alternative Approaches:
Some more ideas

● Plan ahead to minimize changes ;-)
● Keep old schema unchanged

– Create a new schema for all new features
● Use VIEWs to handle changes to existing tables
● And/or copy old data to new schema as needed

– Disadvantages
● Schema becomes messy
● Performance overhead

References:

● These slides
– http://pooteeweet.org/files/phptek06/database_schema_dep

loyment.pdf
● SQLYog

– http://www.webyog.com/
● Toad

– http://www.oracle.com/technology/products/designer
● DBDesigner

– http://fabforce.net/dbdesigner4/
● MySQL Workbench

– http://forums.mysql.com/list.php?113
● AdeptSQL

– http://www.adeptsql.com/

References:
More ..

● Sybase Powerdesigner
– http://www.sybase.com/products/developmentintegration/po

werdesigner
● ERWin

– http://www3.ca.com/Solutions/Product.asp?ID=260
● Visio

– http://office.microsoft.com/visio/
● Daversy

– http://www.svn-hosting.com/trac/Daversy
– http://www.svn-

hosting.com/trac/Daversy/wiki/Dependencies

References:
Still more
● PostGreSQL logging

– http://www.postgresql.org/docs/8.1/interactive/runtime-
config-logging.html

● MySQL logging
– http://dev.mysql.com/doc/refman/5.0/en/binary-log.html

● Oracle logging
– http://www.securityfocus.com/infocus/1689

● DB2 logging
– http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.js

p?topic=/com.ibm.db2.udb.doc/core/r0002051.htm

References:
Yet More ..

● ADODB xml-schema
– http://adodb-xmlschema.sourceforge.net/docs/index.html

● ezc/DatabaseSchema
– http://ez.no/doc/components/view/latest/(file)/classtrees_D

atabaseSchema.html
● PEAR::MDB2_Schema

– http://pear.php.net/package/MDB2_Schema/
● WebBuilder2 Schema Manager

– http://svn.oss.backendmedia.com/modules/schema_manage
r/schema_manager.phps

● SCM for databases?
– http://blogs.ittoolbox.com/database/soup/archives/007666.a

sp

Thank you for listening ..
Comments? Questions?

smith@pooteeweet.org

